Михаил лукин квантовый компьютер. Российские ученые представили самый мощный в мире суперкомпьютер. Полезно ли это

Внешний вид оптической ловушки, использовавшейся другим коллективом физиков

Institut für Experimentalphysik

Российско-американская группа физиков под руководством Михаила Лукина, сооснователя Российского квантового центра и профессора Гарвардского университета, создала программируемый 51-кубитный квантовый компьютер. Это самая сложная подобная система из существующих. Авторы проверили работоспособность компьютера моделированием сложной системы из множества частиц - это позволило физикам предсказать некоторые ранее неизвестные эффекты. Работа принята к публикации в одном из престижных научных журналов, доклад, посвященный разработке, был сделан на конференции ICQT, которая проходит в эти дни в Москве. Подробный разбор препринта работы можно прочитать в нашем .

Квантовые компьютеры оперируют особым типом битов - кубитами. В отличие от классических битов, эти логические элементы могут находиться одновременно в состоянии «ноль» и «единица», выдавая при измерении одно из них с известной вероятностью. Это позволяет разрабатывать принципиально новые алгоритмы вычислений, которые в некоторых случаях оказываются гораздо продуктивнее классических. К примеру, алгоритм Шора оказался экспоненциально быстрее классических алгоритмов разложения чисел на простые множители, а алгоритм Гровера позволяет быстрее находить корни булевых уравнений. Подробнее о квантовых компьютерах можно прочесть в «Квантовой азбуки».

Существует несколько платформ, на базе которых разрабатываются квантовые компьютеры. Основные - это сверхпроводящие квантовые кубиты и холодные атомы в оптических ловушках. Самой сложной программируемой универсальной системой до сегодняшнего дня был компьютер , разработанный IBM. Авторы новой работы улучшили результат в три раза, создав компьютер на холодных атомах, удерживаемых оптическими пинцетами. Как отмечает пресс-релиз, это полностью программируемый 51-кубитный квантовый компьютер.

Работоспособность системы ученые проверили парой экспериментов: вычислением поведения сложной системы, состоящей из большого числа связанных частиц с помощью квантового и классического компьютера. Авторы отмечают, что такие задачи чрезвычайно сложны и практически нерешаемы для традиционных систем. Результаты моделирования не только совпали, но и позволили предсказать неизвестный ранее эффект. Оказывается, при затухании возбуждения в системе могут остаться и удерживаться фактически бесконечно некоторые типы колебаний.

В будущем исследователи допускают реализацию на квантовом компьютере классического алгоритма Шора для разложения чисел на простые множители.

Интересно отметить, что многие коллективы называют 50 кубитов достаточной системой для демонстрации - квантового компьютера, решающего заведомо более сложные задачи, чем те, которые доступны классическим вычислителям. О планах достигнуть этой отметки к концу 2017 года заявляла группа ученых из Google под руководством Джона Мартиниса.

В неуниверсальных квантовых вычислителях можно встретить и большее количество кубитов. К примеру, системы для квантового отжига компании D-wave состоят из тысячи и более сверхпроводящих кубитов. Однако на них нельзя реализовать классические алгоритмы - например, алгоритм Шора. Они подходят лишь для определенного класса задач оптимизации. Тем не менее, на них уже , что квантовые системы могут превзойти современные компьютеры.

Владимир Королёв

МОСКВА, 14 июл — РИА Новости. Российские и американские ученые, работающие в Гарварде, создали и проверили первый в мире квантовый компьютер, состоящий из 51 кубита. Устройство пока является самой сложной вычислительной системой такого рода, заявил профессор Гарвардского университета, сооснователь Российского квантового центра (РКЦ) Михаил Лукин.

Физик сообщил об этом, выступая с докладом на Международной конференции по квантовым технологиям ICQT-2017, которая проводится под эгидой РКЦ в Москве. Это достижение позволило группе Лукина стать лидером в гонке по созданию полноценного квантового компьютера, которая неофициально проходит уже несколько лет между несколькими группами ведущих физиков мира.

Квантовые компьютеры представляют собой особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря использованию законов квантовой механики в их работе. Все подобные устройства состоят из кубитов — ячеек памяти и одновременно примитивных вычислительных модулей, способных хранить в себе спектр значений между нулем и единицей.

Сегодня существует два основных подхода к разработке подобных устройств — классический и адиабатический. Сторонники первого из них пытаются создать универсальный квантовый компьютер, кубиты в котором подчинялись бы тем правилам, по которым работают обычные цифровые устройства. Работа с подобным вычислительным устройством в идеале не будет сильно отличаться от того, как инженеры и программисты управляют обычными компьютерами. Адиабатический компьютер проще создать, но он ближе по принципам своей работы к аналоговым компьютерам начала XX века, а не к цифровым устройствам современности.

В прошлом году сразу несколько команд ученых и инженеров из США, Австралии и ряда европейских стран заявляли о том, что они близки к созданию подобной машины. Лидером в этой неформальной гонке считалась команда Джона Мартиниса из компании Google, разрабатывающая необычный "гибридный" вариант универсального квантового вычислителя, сочетающего в себе элементы аналогового и цифрового подхода к таким расчетам.

Лукин и его коллеги по РКЦ и Гарварду обошли группу Мартиниса, которая, как рассказал Мартинис РИА Новости, сейчас работает над созданием 22-кубитной вычислительной машины, используя не сверхпроводники, как ученые из Google, а экзотические "холодные атомы".

Как обнаружили российские и американские ученые, набор атомов, удерживаемых внутри специальных лазерных "клеток" и охлажденных до сверхнизких температур, можно использовать в качестве кубитов квантового компьютера, сохраняющих стабильность работы при достаточно широком наборе условий. Это позволило физикам создать пока самый большой квантовый вычислитель из 51 кубита.

Используя набор подобных кубитов, команда Лукина уже решила несколько физических задач, чрезвычайно сложных для моделирования при помощи "классических" суперкомпьютеров. К примеру, российские и американские ученые смогли просчитать то, как ведет себя большое облако частиц, связанных между собой, обнаружить ранее неизвестные эффекты, возникающие внутри него. Оказалось, что при затухании возбуждения в системе могут остаться и удерживаться фактически бесконечно некоторые типы колебаний, о чем раньше ученые не подозревали.

Для проверки результатов этих вычислений Лукину и его коллегам пришлось разработать специальный алгоритм, который позволил провести аналогичные расчеты в очень грубом виде на обычных компьютерах. Результаты в целом совпали, это подтвердило, что 51-кубитная система ученых из Гарварда работает на практике.

В ближайшее время ученые намерены продолжить эксперименты с квантовым компьютером. Лукин не исключает, что его команда попытается запустить на нем знаменитый квантовый алгоритм Шора, который позволяет взломать большинство существующих систем шифрования на базе алгоритма RSA. По словам Лукина, статья с первыми результатами работы квантового компьютера уже была принята к публикации в одном из рецензируемых научных журналов.


Российские и американские ученые из Гарвардского университета, работающие в группе Михаила Лукина, создали квантовый компьютер из 51 кубита, самый мощный на сегодня в мире. Об этом сооснователь Российского квантового центра (РКЦ) профессор Лукин сообщил в своем докладе на Международной конференции по квантовым технологиям (ICQT-2017), которая прошла в июле в Москве под эгидой РКЦ.


В отличие от классических цифровых компьютеров, у которых память построена на принципе двоичного кода (0 или 1, «да» или «нет»), квантовые компьютеры строят на основе кубитов - квантовых битов. Они тоже допускают два состояния (0 и 1), но благодаря своим квантовым свойствам кубит дополнительно допускает еще и состояния суперпозиции, то есть, условно говоря, еще массу промежуточных состояний между двумя основными состояниями, описываемых комплексными (мнимыми) числами. Понятно, что при таких условиях мощность и быстродействие квантового компьютера на несколько порядков выше.

Саму идею использовать квантовые вычисления для решения чисто математических задач предложил еще в 1980 году Юрий Манин из Института имени Стеклова, а год спустя принцип построения квантового компьютера сформулировал Ричард Фейнман. Но прошли десятилетия, прежде чем появились технологии, способные реализовать их идеи на практике.

Главной проблемой было создать устойчиво работающие кубиты. Группа Лукина использовала для них не сверхпроводники, а так называемые холодные атомы, которые удерживаются внутри лазерных ловушек при сверхнизких температурах. Это позволило физикам создать самый большой в мире квантовый вычислитель из 51 кубита и обойти своих коллег группы Кристофера Монро из университета штата Мэриленд (5-кубитныое устройство) и группы Джона Мартиниса из компании Google (22-кубитное устройство).

Образно говоря, при строительстве кубитного компьютера физики вернулись от цифровых к аналоговым устройствам первой половины прошлого века. Теперь их задача - перейти к «цифре» на новом, квантовом уровне. Используя набор кубитов на основе «холодных атомов», команда Лукина уже смогла решить несколько частных физических задач, чрезвычайно сложных для моделирования при помощи классических компьютеров.

В ближайшее время ученые намерены продолжить эксперименты с квантовым компьютером. Помимо решения чисто научных задач из области квантовой механики профессор Лукин не исключает, что его команда попытается реализовать на нем знаменитый квантовый алгоритм Шора, перед которым бессильны существующие ныне системы шифрования. Но и других практических областей, где новое поколение компьютеров могло бы произвести революцию, множество. Например, гидрометеорология, где сейчас явно не хватает мощности существующих вычислительных устройств для повышения точности прогнозов погоды.

Квантовые компьютеры делают первые шаги, но не за горами время, когда они станут такой же обыденностью, как нынешние ПК.

Российские и американские ученые, работающие в Гарварде, создали и проверили первый в мире 51-кубитный квантовый компьютер — саму сложную вычислительную систему такого рода.

О этом заявил заявил профессор Гарвардского университета, сооснователь Российского квантового центра (РКЦ) Михаил Лукин, сообщают РИА Новости.

Физик рассказал об этом на Международной конференции по квантовым технологиям ICQT-2017 в Москве.

Это достижение позволило группе Лукина стать лидером в "гонке" по созданию полноценного квантового компьютера, которая неофициально проходит уже несколько лет между несколькими группами ведущих физиков мира.

Квантовые компьютеры представляют собой особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря использованию законов квантовой механики в их работе.

Все подобные устройства состоят из кубитов — ячеек памяти и одновременно примитивных вычислительных модулей, способных хранить в себе спектр значений между нулем и единицей.

Сегодня существует два основных подхода к разработке подобных устройств - классический и адиабатический.

Сторонники первого из них пытаются создать универсальный квантовый компьютер, кубиты в котором подчинялись бы тем правилам, по которым работают обычные цифровые устройства.

Работа с подобным вычислительным устройством в идеале не будет сильно отличаться от того, как инженеры и программисты управляют обычными компьютерами.

Адиабатический компьютер проще создать, но он ближе по принципам своей работы к аналоговым компьютерам начала 20 века, а не к цифровым устройствам современности.

В прошлом году сразу несколько команд ученых и инженеров из США, Австралии и ряда европейских стран заявляли о том, что они близки к созданию подобной машины.

Лидером в этой неформальной гонке считалась команда Джона Мартиниса из компании Google, разрабатывающая необычный "гибридный" вариант универсального квантового вычислителя, сочетающего в себе элементы аналогового и цифрового подхода к таким расчетам.

Лукин и его коллеги по РКЦ и Гарварду обошли группу Мартиниса, которая сейчас работает над созданием 22-кубитной вычислительной машины, используя не сверхпроводники, как ученые из Google, а экзотические "холодные атомы".

Как обнаружили российские и американские ученые, набор атомов, удерживаемых внутри специальных лазерных "клеток" и охлажденных до сверхнизких температур, можно использовать в качестве кубитов квантового компьютера, сохраняющих стабильность работы при достаточно широком наборе условий. Это позволило физикам создать пока самый большой квантовый вычислитель из 51 кубита.

Используя набор подобных кубитов, команда Лукина уже решила несколько физических задач, чрезвычайно сложных для моделирования при помощи "классических" суперкомпьютеров.

К примеру, российские и американские ученые смогли просчитать то, как ведет себя большое облако частиц, связанных между собой, обнаружить ранее неизвестные эффекты, возникающие внутри него. Оказалось, что при затухании возбуждения в системе могут остаться и удерживаться фактически бесконечно некоторые типы колебаний, о чем раньше ученые не подозревали.

Для проверки результатов этих вычислений Лукину и его коллегам пришлось разработать специальный алгоритм, который позволил провести аналогичные расчеты в очень грубом виде на обычных компьютерах. Результаты в целом совпали, это подтвердило, что 51-кубитная система ученых из Гарварда работает на практике.

В ближайшее время ученые намерены продолжить эксперименты с квантовым компьютером. Лукин не исключает, что его команда попытается запустить на нем знаменитый квантовый алгоритм Шора, который позволяет взломать большинство существующих систем шифрования на базе алгоритма RSA.

По словам Лукина, статья с первыми результатами работы квантового компьютера уже была принята к публикации в одном из рецензируемых научных журналов.

Затраты на реализацию проекта "Русское поле" частично покрываются за счет денежных средств, предоставленных фондом "Русский мир"