Реферат: История развития операционных систем. Первые операционные системы Что явилось прообразом первых операционных систем


Краткая история развития операционных систем

Возникновение и основные этапы развития операционных систем

Первые ЭВМ были построены и нашли практическое применение в 40-е годы XX века. Первоначально они использовались для решения единственной частной задачи – расчет траектории артиллерийских снарядов в системах ПВО. В силу специфики применения (решение единственной задачи), первые ЭВМ не использовали ни какой операционной системы. В тот период времени, решением задач на ЭВМ занимались в основном сами же разработчики ЭВМ, а процесс использования ЭВМ представлял собой не столько решение прикладной задачи, сколько исследовательскую работу в области вычислительной техники.

BIOS – первый шаг к созданию операционных систем

Вскоре ЭВМ начали успешно применять для решения других задач: анализ текстов и решение сложных прикладных задач из области физики. Круг потребителей услуг ЭВМ несколько расширился. Однако, для решения каждой конкретной задачи в то время необходимо было написать заново не только код, реализующий алгоритм решения, но и процедуры ввода-вывода и другие процедуры управления процессом вычисления. Существенные издержки такого подхода вскоре стали очевидными:
- код процедур ввода вывода обычно является довольно объемным и сложным в отладке (нередко он оказывался самым большим фрагментом программы), а в случае ошибки в процедуре ввода-вывода могли быть легко потеряны результаты длительных и дорогостоящих вычислений;
- необходимость каждый раз заново писать довольно большой вспомогательный код затягивает время и повышает трудоемкость разработки прикладных программ.
Поэтому для разрешения указанных проблем были созданы специальные библиотеки процедур ввода-вывода (BIOS – Base Input-Output System). Тщательно отлаженные и эффективные процедуры из BIOS можно было легко использовать с любыми новыми программами, не затрачивая время и силы на разработку и отладку стандартных процедур для ввода и вывода данных.
Таким образом, с появлением BIOS программное обеспечение разделилось на системное и прикладное программное обеспечение. Причем прикладное программное обеспечение непосредственно ориентировано на решение полезных задач, в то время как системное программное обеспечение ориентировано исключительно на поддержку работы и упрощение разработки прикладного программного обеспечения.
Однако, BIOS еще не является операционной системой, т.к. не выполняет важнейшую для любой операционной системы функцию – управление процессом вычислений прикладной программы. Кроме того, BIOS не обеспечивает и другие важные функции операционной системы – хранение и запуск прикладных программ. BIOS и библиотеки математических процедур, которые появились примерно в то же время, просто облегчали процесс разработки и отладки прикладных программ, делали их более простыми и надежными. Тем не менее, создание BIOS стало первым шагом на пути к созданию полноценной операционной системы.

Система пакетной обработки – прообраз современной операционной системы

По мере дальнейшего развития электронно-вычислительных машин, с расширением сферы их применения, на первый план быстро вышла проблема недостаточной эффективности использования дорогостоящей ЭВМ.
В 50-е годы персональных компьютеров еще не было, и любая ЭВМ была очень дорогой, громоздкой и относительно редкой машиной. Для доступа к ней со стороны различных научных учреждений составлялось специальное расписание. К указанному времени программист должен был прийти в машинный зал, загрузить свою задачу с колоды перфокарт, дождаться завершения вычислений и распечатать результаты.
При использовании жесткого расписания, если программист не успевал закончить расчеты за отведенное время, он все равно должен был освободить машину, так как для нее была запланирована новая задача. Но это означает, что машинное время было затрачено впустую – результатов то не получено! Если же по какой либо причине расчеты завершались раньше ожидаемого срока, то машина просто простаивала.
Для того, чтобы избежать потерь процессорного времени, неизбежных при работе по расписанию, была разработана концепция пакетной обработки заданий, сущность которой поясняет следующий рисунок (Рисунок 1).

Рисунок 1 Структура вычислительной системы с пакетной обработкой

Впервые, пакетная система была разработана в середине 50-х компанией General Motors для машин IBM 701. По-видимому, это была первая операционная система. Основная идея пакетной обработки состоит в том, чтобы управление загрузкой программ и распечатку результатов поручить маломощным и относительно дешевым машинам-сателлитам, которые подключаются к большой (основной) машине через высокоскоростные электронные каналы. При этом большая ЭВМ будет только решать задачу, полученную от машины-сателлита, и после завершения задачи передавать результаты по высокоскоростному каналу другой машине-сателлиту для распечатки.
Машины сателлиты работают самостоятельно, освобождая центральный процессор от необходимости управления медленными внешними устройствами. При этом распечатка результатов предыдущей задачи может происходить в ходе решения текущей задачи, и одновременно в электронную память машины-сателлита может считываться следующая задача. Такая организация системы пакетной обработки заданий известна как простая пакетная система.
Системы пакетной обработки заданий, реализованные в 50-е годы, стали прообразом современных операционных систем. В них впервые было реализовано программное обеспечение, используемое для управления исполнением прикладных программ.
Заметим здесь также, что описанный подход к построению H/W вполне сохранился до настоящего времени. Современные периферийные устройства, и, прежде всего, это накопители на жестких магнитных дисках, способны передавать большие объемы данных без участия центрального процессора. Забегая вперед, укажем, что только благодаря такому свойству аппаратуры компьютера существуют и эффективно работают современные многозадачные операционные системы.

Многозадачные операционные системы

Первые многозадачные операционные системы появились в 60-е годы в результате дальнейшего развития систем пакетной обработки заданий. Основным стимулом к их появления стали новые аппаратные возможности ЭВМ.
Во-первых, появились новые эффективные носители информации, на которых можно было легко автоматизировать поиск требуемых данных: магнитные ленты, магнитные цилиндры и магнитные диски. Это, в свою очередь, изменило структуру прикладных программ – теперь они могли в процессе работы загрузить дополнительные данные для вычислений или процедуры из стандартных библиотек.
Заметим теперь, что простая пакетная система, приняв задачу, обслуживает ее вплоть до полного завершения, а это значит, что во время загрузки дополнительных данных или кода процессор простаивает, при этом стоимость простоя процессора возрастает с ростом его производительности, так как более производительный процессор мог бы сделать за время простоя большее количество полезной работы.
Во-вторых, производительность процессоров существенно возросла, и потери процессорного времени в простых пакетных системах стали недопустимо велики.
В этой связи логичным шагом стало появление многозадачных пакетных систем. Необходимым условием для создания многозадачных систем является достаточный объем памяти компьютера. Для многозадачности объем памяти должен быть достаточен для размещения, по крайней мере, двух программ одновременно.
Основная идея многозадачности вполне очевидна – если текущая программа приостанавливается в ожидании завершения ввода-вывода, то процессор переходит к работе с другой программой, которая в данный момент готова к выполнению.
Однако, переход к другой задаче должен быть сделан так, чтобы сохранить возможность вернуться к брошенной задаче спустя некоторое время и продолжить ее работу с точки останова. Для реализации такой возможности в операционную систему потребовалось ввести специальную структуру данных, определяющую текущее состояние каждой задачи – контекст процесса. Контекст процесса определен в любой современной операционной системе таким образом, чтобы данных из него было бы достаточно для полного восстановления работы прерванной задачи.
Появление многозадачности потребовало реализации в составе операционной системы сразу нескольких фундаментальных подсистем, которые также представлены в любой современной операционной системе. Перечислим их:
1) подсистема управления процессорами – определяет какую задачу и в какое время следует передать процессору для обслуживания;
2) подсистема управления памятью – обеспечивает бесконфликтное использование памяти сразу несколькими программами;
3) подсистема управления процессами – обеспечивает бесконфликтное разделение ресурсов компьютера (например, магнитных дисков или общих подпрограмм) сразу несколькими программами.
В рамках этого курса будет подробно рассмотрена реализация указанных подсистем в современных операционных системах.
Почти сразу после появления многозадачных операционных систем, было замечено, что многозадачность полезна не только для повышения коэффициента использования процессора. Например, на основе многозадачности можно реализовать многопользовательский режим работы компьютера, т.е. подключить к нему несколько терминалов одновременно, причем для пользователя за каждым терминалом будет создана полная иллюзия, что он работает с машиной один. До эпохи массового использования персональных компьютеров, многопользовательский режим был основным режимом работы практически для всех ЭВМ. Повсеместная поддержка многопользовательского режима резко расширила круг пользователей компьютеров, сделала его доступным для людей различных профессий, что в конечном итоге и привело к современной компьютерной революции и появлению ПК.
При этом в зависимости от алгоритмов, положенных в основу работы подсистемы управления процессорами, операционная система, а с ней и вся ЭВМ, приобретает различные свойства. Например, многозадачная пакетная система, переключающаяся на другую задачу только при невозможности продолжить текущую, способна обеспечить максимальную пропускную способность компьютера, т.е. максимизировать среднее число задач, решаемых в единицу времени, но из-за непредсказуемости времени ответа многозадачная пакетная система совершенно не подходит для интерактивной системы, немедленно реагирующей на пользовательский ввод.
Многозадачная система с принудительным вытеснением задачи по истечению кванта времени идеально подходит для интерактивной системы, но не обеспечивает максимальной производительности для вычислительных задач.
При изучении темы "управление процессорами" в рамках данного курса будут рассмотрены особенности многих конкретных алгоритмов, показаны компромиссные решения, подходящие для универсальных операционных систем, ориентированных на решение широкого круга задач.
В качестве вывода отметим, что появление многозадачности было вызвано желанием максимально использовать процессор, исключив по возможности его простои, и в настоящее время многозадачность является неотъемлемым качеством практически любой современной операционной системы.

Операционные системы с поддержкой виртуальной памяти

Появление системы виртуальной памяти в конце 60-х, стало последним шагом на пути к современным операционным системам. Появление в дальнейшем графических пользовательских интерфейсов и даже поддержка сетевого взаимодействия уже не были столь революционными решениями, хотя и существенно повлияли и на развитие аппаратуры компьютеров, и на развитие самих операционных систем.
Толчком к появлению виртуальной памяти стали сложности управления памятью в многозадачных операционных системах. Основные проблемы здесь следующие:
- Программы, как правило, требуют для своего размещения непрерывную область памяти. В ходе работы, когда программа завершается, она освобождает память, но этот регион памяти далеко не всегда пригоден для размещения новой программы. Он или слишком мал, и тогда для размещения программы приходится искать участок в другой области памяти, или слишком велик, и тогда после размещения новой программы останется неиспользуемый фрагмент. При работе операционной системы, вскоре образуется очень много таких фрагментов – суммарный объем свободной памяти велик, но разместить новую программу не удается так как нет ни одной достаточно длинной непрерывной свободной области. Такое явление называется фрагментацией памяти.
- В случае, когда несколько программ одновременно находятся в общей памяти, ошибочные или преднамеренные действия со стороны какой-либо программы могут нарушить выполнение других программ, кроме того, данные или результаты работы одних программ могут быть несанкционированно прочитаны другими программами.
Как будет показано в рамках данного курса дальше, виртуальная память не только идеально решает подобные проблемы, но также предоставляет новые возможности для дальнейшей оптимизации работы всей вычислительной системы.
Решающей предпосылкой для появления системы виртуальной памяти стал механизм свопинга (от англ. to swap – менять, обменивать).
Идея свопинга состоит в том, чтобы выгружать из ОЗУ во вторичную память (на магнитный диск) программы, временно снятые с выполнения, и загружать их обратно в ОЗУ, когда они становятся готовыми к дальнейшему выполнению. Таким образом, происходит постоянный обмен программами между ОЗУ и вторичной памятью.
Свопинг позволяет освободить место в оперативной памяти для загрузки новых программ за счет выталкивания во вторичную память программ, которые не могут выполняться в данный момент. Свопинг достаточно эффективно решает проблему нехватки оперативной памяти и фрагментации, но не решает проблемы защиты.
Виртуальная память также основана на выталкивании части программ и данных из оперативной памяти во вторичную память, но реализуется гораздо сложнее и требует обязательной поддержки от аппаратных средств процессора. Конкретные механизмы работы виртуальной памяти будут рассмотрены в дальнейшем.
В конечном итоге, система виртуальной памяти организует собственное адресное пространство для каждой запущенной программы, которое называется виртуальное адресное пространство. При этом участки виртуального адресного пространства, по усмотрению операционной системы, могут отображаться либо на участки оперативной памяти, либо на участки вторичной памяти (см. Рисунок 2).


Рисунок 2 Отображение виртуального адресного пространства

При использовании виртуальной памяти, программы не смогут ошибочно или преднамеренно обратиться к данным других программ или самой операционной системы – подсистема виртуальной памяти гарантирует защиту данных. Кроме того, неиспользуемые в данный момент области виртуального адресного пространства отображаются во вторичную память, т.е. данные из этих областей хранятся не в ОЗУ, а во вторичной памяти, что решает проблему нехватки оперативной памяти. Наконец, области виртуального адресного пространства могут отображаться на произвольные участки ОЗУ, при этом соседние участки виртуального адресного пространства не обязательно должны быть соседними в ОЗУ, что решает проблему фрагментации.
Как уже было сказано, виртуальная память впервые была использована в реальных операционных системах в конце 60-х, но широкое распространение виртуальная память получила только в 80-х (UNIX, VAX/VMS), а повсеместно стала применяться в персональных компьютерах лишь в середине 90-х годов (OS/2, Linux, Windows NT). В настоящее время, виртуальная память, наряду с многозадачностью, является неотъемлемой частью практически любой современной операционной системы.

Графические интерфейсы пользователя

С конца 80-х, персональные компьютеры получили повсеместное распространение, и в сообщество пользователей ПК оказалось вовлечено множество людей различных специальностей. Многие из них не имели специальной компьютерной подготовки, но хотели использовать компьютер в своей работе, т.к. использование компьютера давало ощутимые преимущества в их деле.
С другой стороны, усложнение операционных систем и прикладных программ сделало управление ими достаточно сложной задачей даже для специалистов, и интерфейс командной строки, который к этому времени стал стандартом для операционных систем, перестал удовлетворять практическим запросам.
Наконец, появились новы аппаратные возможности: цветные графические мониторы, высокопроизводительные графические контроллеры и манипуляторы типа мышь.
Таким образом, в конце 80-х сложились все условия для повсеместного перехода на графический интерфейс пользователя: с одной стороны возникла потребность в более простом и удобном механизме управления компьютером, с другой стороны, развитие аппаратных средств позволяло построить такой механизм.
Основная идея графического интерфейса пользователя состоит в следующем:
- пользователю, в зависимости от текущей ситуации, предлагается выбрать один из нескольких альтернативных вариантов дальнейших действий;
- возможные варианты действий пользователя представлены на экране ЭВМ в виде текстовых строк (меню) или схематичных рисунков (пиктограмм);
- для выбора одного из вариантов дальнейших действий достаточно совместить на экране монитора указатель (курсор) с элементом меню или пиктограммой и нажать заранее определенную клавишу (обычно это <пробел>, <ввод> или кнопка мышки), чтобы проинформировать систему о сделанном выборе.
Первый графический интерфейс был разработан в 81 году в компании Xerox. Говорят, что посещение главой компании Microsoft Билом Гейтсом компании Xerox и знакомство с ее разработками в области графических пользовательских интерфейсов, подвигли Microsoft на создание собственных графических интерфейсов пользователя.
В настоящее время наиболее совершенным графическим интерфейсом обладает, по-видимому, операционные системы семейства Windows, эти графические интерфейсы являются как бы стандартов де-факто для графических интерфейсов пользователя.
Использование графического интерфейса оказалось настолько простым и интуитивно понятным, что компьютеры в настоящее время стали эффективно использовать в своей работе люди, которые даже не имеют никакого представления об архитектуре самого компьютера, операционной системы или прикладной программы.
В конечном итоге, появление графических интерфейсов пользователя в составе операционных систем и прикладных программ оказало колоссальное влияние на компьютеризацию современного общества.

Встроенная поддержка сети

Встроенная сетевая поддержка в составе операционных системах общего назначения впервые появилась в середине 90-х, и первоначально обеспечивала только доступ к удаленным файлам, расположенным на дисках другого компьютера. Первоначально, поддержка сети требовалась только в небольших офисах для совместной работы нескольких компьютеров над одним документом.
Однако развитие сети Интернет быстро привело к необходимости встроить сетевую поддержку даже в операционные системы для домашних компьютеров. Кроме того, интересно отметить, что постоянное снижение стоимости домашних компьютеров в последние годы вызвало к жизни домашние компьютерные сети, когда в одной семье используется несколько компьютеров с возможностью совместного использования общего принтера, сканера или другого оборудования.
Вершиной интеграции при сетевом взаимодействии являются сетевые операционные системы, объединяющие ресурсы всех компьютеров сети в общий сетевой ресурс, доступный любому компьютеру сети. Разумное использование сетевой операционной системы позволяет решать сложные переборные или оптимизационные задачи при наличии в сети достаточно большого количества ЭВМ, каждая из которых в отдельности не в состоянии решить задачу за приемлемое время.

История наиболее распространенных операционных систем

Операционная система UNIX

Операционная система UNIX является первой современной операционной системой. Технические решения, заложенные даже в самые первые версии UNIX, в последствии стали стандартными решениями для многих более поздних операционных систем, причем не только для семейства UNIX. Многие алгоритмы, заложенные в подсистему управления ресурсами UNIX, до настоящего времени являются наилучшими и тиражируются в различных операционных системах.
Рассмотрим историю возникновения и развития UNIX более подробно.

Проект операционной системы Multics

В проекте Multics в период 1965 – 1969 гг. совместно участвовали компании Bell Labs и General Electric. Целью проекта Multics было создание новой многопользовательской многозадачной интерактивной операционной системы, сочетающей удобство использования с мощной и эффективной системой управления ресурсами. В основу Multics были положены следующие технические решения:
- виртуальная память с сегментно-страничной организацией, контролирующая права доступа на запись, чтение или исполнение для каждого сегмента;
- централизованная файловая система, обеспечивающая организацию данных, даже находящихся на разных физических устройствах, в виде единой древовидной структуры каталогов/файлов;
- отображение содержимого файла в виртуальное адресное пространство процесса с использованием механизмов управления виртуальной памятью.
Все эти решения характерны и для современных операционных систем. Однако проект Multics не был завершен. Руководство компании Bell Labs приняло решение о выходе из проекта, посчитав дальнейшее финансирование проекта нецелесообразным, так как большие средства, уже вложенные в проект, не приносили отдачи.
Несмотря на досрочное прекращение, в ходе проекта Multics были определены базовые принципы управления ресурсами и архитектуры операционных систем, которые успешно используются до настоящего времени, а специалисты, участвующие в проекте, получили бесценный опыт. Среди участников проекта Multics были Кен Томпсон и Деннис Ритчи, будущие авторы первой версии UNIX.

Возникновение операционной системы UNIX

После прекращения проекта Multics, Кен Томпсон, Деннис Ритчи и некоторые другие сотрудники Bell Labs продолжили исследовательскую работу в области операционных систем, и вскоре предложили идею усовершенствованной файловой системы. По счастливому стечению обстоятельств, компания Bell Labs в то время испытывала острую потребность в удобных и эффективных средствах ведения документации, и новая файловая система могла здесь оказаться полезной.
В 1969 Кен Томпсон реализовал на машине PDP-7 операционную систему, включающую в себя новую файловую систему, а также специальные средства управления процессами и памятью, позволяющие работать на одной машине PDP-7 сразу двум пользователям в режиме разделения времени. Первыми пользователями новой операционной системы стали сотрудники патентного отдела Bell Labs.
Брайан Керниган предложил назвать новую систему UNICS – Uniplexed Information and Computing System. Название понравилось разработчикам, отчасти еще и потому, что напоминало Multics. Вскоре название стали записывать как UNIX – произносится также, но запись короче на одну букву. Это название дошло до настоящего времени.
В 1971 году, после переноса UNIX на PDP-11, была выпущена первая редакция документации, и новая операционная система появилась уже официально.
Первая редакция UNIX была написана на ассемблере, что накладывало определенные трудности при переносе операционной системы на другие платформы, поэтому для работы над второй редакцией UNIX, Кен Томпсон разработал собственный язык программирования B. Вторая редакция вышла в 1972 году и содержала программные каналы, позволяющие устанавливать взаимодействие между программами, одновременно выполняющимися на ЭВМ.
Появление операционной системы, написанной не на ассемблере, было революционным шагом в области системного программирования, но язык B содержал в себе ряд ограничений, сдерживающих его применение. Поэтому в 1973 году Деннис Ритчи разработал язык C, и операционная система была переписана на новом языке.
В 1975 году появилась первая коммерческая версия UNIX, известная как UNIX v.6 и UNIX начала свое триумфальное шествие по миру.

Основные этапы развития UNIX

1976. В университете г. Беркли сложилась группа студентов и профессоров, серьезна занявшаяся системой UNIX. В последствие группой университета Беркли основала собственную ветвь развития ОС UNIX – BSD UNIX (Berkeley Software Distribution). В ветви BSD впервые появились такие известные компоненты UNIX, как текстовый редактор vi, стек протоколов TCP/IP, страничный механизм в системе управления виртуальной памятью.
1977. Первый опыт по переносу UNIX на другую аппаратную платформу (отличную от PDP-11). В университете Воллонгонга в Австралии профессор Джюрис Рейндфельдс частично перенес UNIX на 32 разрядную машину.
1978. Томпсон и Ритчи в Bell Labs осуществили полный перенос UNIX на 32 разрядную машину. Перенос сопровождался существенными изменениями в организации системы, которые позволили упростить последующие переносы UNIX на другие платформы. Одновременно язык C был расширен практически до современного состояния.
1978. Специально для поддержки UNIX в Bell Labs создано подразделение USG (UNIX Support Group).
1982. USG выпустила UNIX System III, которая аккумулировала лучшие решения, представленные в различных версиях UNIX, известных к тому времени. Впервые представлены именованные программные каналы.
1983. Выход Unix System V. В ней впервые представлены семафоры, средства разделения памяти и очереди сообщений, а для повышения производительности использовано кэширование данных.
1984. USG преобразована в лабораторию по развитию UNIX – USDL (UNIX System Development Laboratories). Выпущена версия UNIX System V Release 2 (SVR2). В системе реализована возможность блокировки файлов и копирования совместно используемых страниц памяти при записи.
1986. Появление графического интерфейса для UNIX-подобных операционных систем – графическая система X Windows.
1987. USDL выпустила UNIX System V Release 3 (SVR3). Впервые представлены современные возможности межпроцессного взаимодействия, разделение удаленных файлов, обработка сигналов.
1989. Выход UNIX System V Release 4 (SVR4). UNIX впервые реализована на основе концепции микроядра. Введена поддержка процессов реального времени, и легковесных процессов.

Операционная система Linux

В настоящее время операционная система Linux переживает этап бурного развития. И хотя это молодая операционная система, возраст которой всего чуть более 10 лет, она уже успела получить признание многих тысяч пользователей.
У истоков операционной системы Linux стоял Линус Торвальдс, в то время студент-первокурсник, который в конце 1991 г. поместил в Интернет разработанную им микро операционную систему Linux и пригласил всех желающих принять участие в развитии этой системы. В результате к проекту подключилось множество талантливых программистов, и совместными усилиями большого числа людей, взаимодействующих через Интернет, была разработана весьма совершенная операционная система.
В основу Linux легли некоторые решения из UNIX BSD 4.2, и поэтому Linux обычно рассматривают как самостоятельную ветвь UNIX-подобных операционных систем.
В настоящее время Linux развивается в рамках технологии Open Source – открытых исходных текстов, доступных всем желающим. Любой человек может разработать и послать свои изменения или дополнения к Linux, а инсталляцию Linux можно получить бесплатно через Интернет.
В настоящее время Linux также разделился на несколько самостоятельных ветвей, между которыми все еще много общего, но есть отличия в реализации некоторых компонентов, как в ядре системы, так и в различных утилитах.
Операционная система Linux сейчас рассматривается многими людьми как серьезная альтернатива операционным системам семейства Windows. Система Linux устойчиво работает и обеспечивает высокую производительность. Единственное, что все еще сдерживает распространение Linux, это недостаточное число офисных прикладных программ, таких как текстовые процессоры или электронные таблицы. Но в последнее время количество таких программ неуклонно растет, а качество их пользовательских интерфейсов приближается к привычному для пользователей Windows.
Еще одна проблема системы Linux состоит в том, что она обычно отстает с поддержкой новейших аппаратных средств, но это тоже имеет свое объяснение. Разработчики этих аппаратных средств всегда предоставляют ведущим производителям операционных систем сведения о них еще до появления данного аппаратного средства на рынке, поэтому, например, Windows обычно обеспечивает поддержку новых аппаратных средств сразу же при их появлении на рынке. Авторитет системы Linux в среде разработчиков аппаратных средств неуклонно растет, поэтому можно надеяться, что проблема поддержки аппаратных средств скоро решиться.

Операционная система Windows

В настоящее время семейство операционных систем Windows – это наиболее массовые операционные система для персональных компьютеров. Все эти операционные системы имеют весьма схожий (и весьма совершенный!) графический интерфейс пользователя, но существенно различаются по внутреннему строению.
В семействе Windows, операционные системы Windows 95/98/Me представляют ветвь потребительских операционных систем, ориентированных, прежде всего, на домашнее использование, а система Windows XP в первую очередь ориентирована на 64-х битную платформу, и в 32-х битной реализации отличается от Windows 2000 в основном интерфейсом.
Современная операционная система Windows 2000 является типичной многозадачной операционной системой, поддерживающей виртуальную память, файловую систему, сеть, графический интерфейс пользователя, средства мультимедиа. Она прямо происходит от Windows NT и практически не имеет ничего общего с операционной системой MS-DOS, широко распространенной около десятилетия назад. Тем не менее, развитие операционных систем Microsoft происходило последовательно, и их историю логичнее всего начать именно от DOS.
1983. Выходит операционная система MS-DOS 2.0, включающая поддержку накопителя на жестком диске, файловой системы с иерархической структурой имен файлов, загружаемых драйверов устройств. В дальнейшем, все версии Windows, вплоть до Windows NT работали как надстройка над DOS версии не ниже 2.0, используя его файловую систему и системные функции для работы с аппаратурой компьютера.
1985. Выходит первая версия Windows – Windows 1.01. В то время Windows еще не является полноценной операционной системой и требует для своей работы операционную систему DOS 2.0. Система Windows 1.01 поддерживает только не перекрывающиеся окна и позволяет пользователям переключаться между программами без их перезапуска. К моменту появления Windows 1.01, на рынке уже представлено несколько графических оболочек для DOS, однако все они, как и Windows, не пользуются особой популярностью из-за отсутствия программ. Кроме того, работа в не перекрывающихся окнах неудобна.
1987. Выходит версия Windows 2.0, поддерживающая перекрывающиеся окна. Одновременно с выходом Windows 2.0 на рынке появляется электронная таблица Microsoft Excel и текстовый процессор Word 1.0 – по настоящему удобное программное обеспечение для Windows. Благодаря удобному графическому интерфейсу и наличию полезных прикладных программ, версия Windows 2.0 становится популярной, за пол года продано миллион копий.
1988. Выходит версия Windows 2.1, поддерживающая расширенную память на процессоре 80286 и многозадачность на процессоре 80386. Для этой версии становится обязательным наличие в составе компьютера накопителя на жестком магнитном диске (до этого достаточно было дискет).
1990. Выходит версия Windows 3.0. Она запускается в защищенном режиме процессора и поддерживает свопинг для программ и данных, основанный на дескрипторах блоков памяти. При этом, пока данные из некоторого блока памяти не требуются, система может по своему усмотрению перемещать этот блок в памяти и даже сбрасывать на диск его данные. Но когда эти данные понадобятся какой либо программе, она должна указать это системе и передать ей дескриптор блока памяти для идентификации требуемого блока (при выделении блока памяти система возвращает его дескриптор). Получив требование на доступ к памяти, система блокирует данный блок в памяти и передает приложению указатель на начало блока. Система больше не может перемещать этот блок памяти, пока приложение не проинформирует ее, что обращение к данным из этого блока памяти больше не требуется. Начиная с версии Windows 3.0 программы MS-DOS могут запускаться в окне.
1992. Выходит версия Windows 3.1, которая представляет собой просто дальнейшее усовершенствование Windows 3.0, но это первая версия Windows, получившая широкое распространение в России. Вскоре Windows 3.1 становится самой популярной по числу инсталляций системой в США и удерживает первенство вплоть до 1997 года.
1993. Выходит версия Windows 3.11, дополненная поддержкой сети (электронная почта, совместный доступ к файлам, рабочие группы).
1993. Выходит операционная система Windows NT (NT – New Technology) – первая полноценная операционная система семейства Windows, не требующая для своей работы базиса в виде MS-DOS. Для работы Windows NT требуется процессор не ниже 80386, в ней реализована полноценная виртуальная память, вытесняющая многозадачность, новая файловая система. Начиная с Windows NT, разделились потребительская и профессиональная ветви.
1995. Выходит операционная система Windows 95, являясь дальнейшим развитием Windows 3.11, она становится первой потребительской версией Windows, не требующей для своей работы DOS. В Windows 95 впервые представлен новый графический интерфейс пользователя, очень удобный, интуитивно понятный, он выводит Windows на первое место в мире по удобству использования и качеству пользовательского интерфейса.
1996. Выходит операционная система Windows NT4. Она является дальнейшим развитием Windows NT и получает пользовательский интерфейс Windows 95. В скором времени операционная система Windows NT4 станет одной из самых популярных для профессиональной работы.
2000. Выходит операционная система Windows 2000. Она в основном унаследовала внутреннюю архитектуру Windows NT, но было введено ряд дополнительных сервисов, например, поддержка распределенных вычислений.
2000. Выходит операционная система Windows Me, являющаяся дальнейшим развитием Windows 95/98. Однако объявлено, что она станет последней потребительская версией Windows. Отделившаяся в 1993 году потребительская ветвь вновь сливается с профессиональной, и дальше будет развиваться единая ветвь Windows XP.
и т.д. и т.п.
2006. Vista

Этапы развития операционных систем

Резюме к главе 1

1. Основной частью программного компонента вычислительных систем является операционная система. Выполняя управляющую функцию, она определяет облик вычислительной системы.

2. Операционная система представляет собой основную системную программу ЭВМ. Проектирование операционной системы осуществляют так же, как и других (прикладных и инструментальных) программ.

3. Огромное разнообразие операционных систем вызвало необходимость их классификации. ОС классифицируют по следующим признакам: по числу одновременно выполняемых задач, по числу одновременно работающих пользователей, по числу одновременно управляемых процессоров, по режиму работы.

4. В основу построения современных операционных систем положены девять принципов, каждый из которых можно экстраполировать и на разработку прикладных программ.

Контрольные вопросы к главе 1

1. В чем отличие операционных систем от других программ? 2. Каковы основные функции операционной системы? 3. Какие виды программного обеспечения Вы знаете? 4. Что является основной частью операционной системы? 5. Какие категории операционных систем Вам известны? 6. Возможно ли экстраполировать (распространить) принципы построения операционных систем на разработку прикладных программ?


ГЛАВА 2. ИСТОРИЯ РАЗВИТИЯ ОПЕРАЦИОННЫХ СИСТЕМ

Первый период (1945 -1955): сороковые годы 20 столетия ознаменовались появлением вычислительной техники, но операционных систем не было, доступ к вычислительным ресурсам заключался в машинном кодировании. Первое поколение ОС (50-е годы) – системы пакетной обработки. В таких системах задание обрабатывается как последовательность пакетов, и во время обработки отсутствует взаимодействие между пользователем и его заданием.

В середине 40-х были созданы первые ламповые вычислительные устройства. В то время одна и та же группа людей участвовала и в проектировании, и в эксплуатации, и в программировании вычислительной машины. Это была скорее научно-исследовательская работа в области вычислительной техники, а не использование компьютеров в качестве инструмента решения каких-либо практических задач из других прикладных областей. Программирование осуществлялось исключительно на машинном языке. Операционные системы отсутствовали, все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления. Не было никакого другого системного программного обеспечения, кроме библиотек математических и служебных подпрограмм.

Второй период (1955 – 1965): с середины 50-х годов начался новый период в развитии вычислительной техники, связанный с появлением новой технической базы – полупроводниковых элементов. Компьютеры второго поколения стали более надежными, теперь они смогли непрерывно работать настолько долго, чтобы на них можно было возложить выполнение действительно практически важных задач. Именно в этот период произошло разделение персонала на программистов и операторов, эксплуатационников и разработчиков вычислительных машин.



В эти годы появились первые алгоритмические языки, а следовательно и первые системные программы – компиляторы. Стоимость процессорного времени возросла, что потребовало уменьшения непроизводительных затрат времени между запусками программ. Появились первые системы пакетной обработки, которые просто автоматизировали запуск одной программ за другой и тем самым увеличивали коэффициент загрузки процессора. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какую работу он хочет выполнить на вычислительной машине. Совокупность нескольких заданий, как правило, в виде колоды перфокарт, получила название пакета заданий.

Второе поколение ОС (60-е годы) – системы с мультипрограммированием и первые системы мультипроцессорного типа. Разрабатываются ОС разделения времени (системы, обеспечивающие обслуживание многих пользователей, которые могут взаимодействовать со своими заданиями) и первые ОС реального времени (системы, обеспечивающие незамедлительную реакцию на внешние воздействия, в таких средах развиты системы прерываний).

Третий период (1965 – 1980):следующий важный период развития вычислительных машин относится к 1965-1980 годам (соответственно 3 и 4 поколение ОС). В это время в технической базе произошел переход от отдельных полупроводниковых элементов типа транзисторов к интегральным микросхемам, что дало большие возможности новому, третьему поколению компьютеров.

Для этого периода характерно также создание семейств программно-совместимых машин. Первым семейством программно-совместимых машин, построенных на интегральных микросхемах, явилась серия машин IBM/360 . Построенное в начале 60-х годов это семейство значительно превосходило машины второго поколения по критерию цена/производительность. Вскоре идея программно-совместимых машин стала общепризнанной.

Программная совместимость требовала и совместимости операционных систем. Эти операционные системы должны были бы работать как на больших, так и на малых вычислительных системах, с большим и с малым количеством разнообразной периферии, в коммерческой области и в области научных исследований. Операционные системы, построенные с намерением удовлетворить всем этим противоречивым требованиям, оказались чрезвычайно сложными «монстрами». Они состояли из многих миллионов ассемблерных строк, написанных тысячами программистов, и содержали тысячи ошибок, вызывающих нескончаемый поток исправлений. В каждой новой версии операционной системы исправлялись одни ошибки и вносились другие.

Итак, третье поколение ОС (с середины 60-х годов) – многорежимные ОС, которые одновременно могут работать и в режиме пакетной обработки, и в режиме разделения времени, и в режиме реального времени, и в режиме мультипроцессорной обработке.

Четвертое поколение (с середины 70-х годов) – операционные системы, позволяющие получать доступ к территориально распределенным ЭВМ – сетевые операционные системы.

Несмотря на необозримые размеры и множество проблем, операционные системы машин третьего поколения действительно удовлетворяли большинству требований потребителей. Важнейшим достижением ОС данного поколения явилась реализация мультипрограммирования. Мультипрограммирование – это способ организации вычислительного процесса, при котором на одном процессоре попеременно выполняются несколько программ. Пока одна программа выполняет операцию ввода-вывода, процессор не простаивает, как это происходило при последовательном выполнении программ (однопрограммный режим), а выполняет другую программу (многопрограммный режим). При этом каждая программа загружается в свой участок оперативной памяти, называемый разделом.

Другое нововведение – спулинг (spooling ). Спулинг в то время определялся как способ организации вычислительного процесса, в соответствии с которым задания считывались с перфокарт на диск в том темпе, в котором они появлялись в помещении вычислительного центра, а затем, когда очередное задание завершалось, новое задание с диска загружалось в освободившийся раздел.

Наряду с мультипрограммной реализацией систем пакетной обработки появился новый тип ОС – системы разделения времени. Вариант мультипрограммирования, применяемый в системах разделения времени, нацелен на создание для каждого отдельного пользователя иллюзии единоличного использования вычислительной машины.

Четвертый период (1980 – настоящее время): данный период в эволюции операционных систем связан с появлением больших интегральных схем (БИС). В эти годы произошло резкое возрастание степени интеграции и удешевление микросхем. Компьютер стал доступен отдельному человеку, и наступила эра персональных компьютеров. С точки зрения архитектуры персональные компьютеры ничем не отличались от класса миникомпьютеров типа PDP-11 , но вот цена у них существенно отличалась. Если миникомпьютер дал возможность иметь собственную вычислительную машину отделу предприятия или университету, то персональный компьютер сделал это возможным для отдельного человека.

Компьютеры стали широко использоваться неспециалистами, что потребовало разработки «дружественного» программного обеспечения.

На рынке операционных систем доминировали две системы: MS-DOS и UNIX . Однопрограммная однопользовательская ОС MS-DOS широко использовалась для компьютеров, построенных на базе микропроцессоров Intel 8088, а затем 80286, 80386 и 80486. Мультипрограммная многопользовательская ОС UNIX доминировала в среде «неинтеловских» компьютеров, особенно построенных на базе высокопроизводительных RISC -процессоров.

В середине 80-х стали бурно развиваться сети персональных компьютеров, работающие под управлением сетевых или распределенных ОС.

В сетевых ОС пользователи должны быть осведомлены о наличии других компьютеров и должны делать логический вход в другой компьютер, чтобы воспользоваться его ресурсами, преимущественно файлами. Каждая машина в сети выполняет свою собственную локальную операционную систему, отличающуюся от ОС автономного компьютера наличием дополнительных средств, позволяющих компьютеру работать в сети. Сетевая ОС не имеет фундаментальных отличий от ОС однопроцессорного компьютера. Она обязательно содержит программную поддержку для сетевых интерфейсных устройств (драйвер сетевого адаптера), а также средства для удаленного входа в другие компьютеры сети и средства доступа к удаленным файлам, однако эти дополнения существенно не меняют структуру самой операционной системы.

Введение.

1. Назначение операционных систем

2. Типы операционных систем .

2.1 Операционные системы пакетной обработки

2.2 Операционные системы разделения времени

2.3 Операционные системы реального времени

2.4 Диалоговые операционные системы

3. Особенности алгоритмов управления ресурсами

3. 1 Поддержка многозадачности

3.2 Поддержка многопользовательского режима

3.3 Вытесняющая и невытесняющая многозадачность

3.4 Поддержка многонитевости

3.5 Многопроцессорная обработка

4. История развития ОС

4.1 Развитие первых операционных систем

4.2 Операционные системы и глобальные сети.

4.3 Операционные системы мини-компьютеров и

первые локальные сети

4.4 Развитие операционных систем в 80-е годы.

4.5 Особенности современного этапа развития операционных систем.

4.6 Хронология событий, приведших к появлению Windows 98

4.7 Развитие Windows NT

Заключение

Список используемой литературы.

Введение

Среди всех системных программ, с которыми приходится иметь дело пользователям компьютеров, особое место занимают операционные системы. Операционная система управляет компьютером, запускает программы, обеспечивает защиту данных, выполняет различные сервисные функции по запросам пользователя и программ. Каждая программа пользуется услугами ОС, а потому может работать только под управлением той ОС, которая обеспечивает для неё эти услуги.

1. Назначение операционных систем.

Операционная система в наибольшей степени определяет облик всей вычислительной системы в целом. Несмотря на это, пользователи, активно использующие вычислительную технику, зачастую испытывают затруднения при попытке дать определение операционной системе. Частично это связано с тем, что ОС выполняет две по существу мало связанные функции: обеспечение пользователю-программисту удобств посредством предоставления для него расширенной машины и повышение эффективности использования компьютера путем рационального управления его ресурсами.

Операционная система (ОС) - комплекс программ, которые обеспечивают управление аппаратурой ЭВМ, планирование эффективного использования её ресурсов и решение задач по заданиям пользователей.

Назначение операционной системы.

Основная цель ОС, обеспечивающей работу ЭВМ в любом из описанных режимов, - динамическое распределение ресурсов и управление ими в соответствии с требованиями вычислительных процессов (задач).

Ресурсом является всякий объект, который может распределяться операционной системой между вычислительными процессами в ЭВМ. Различают аппаратные и программные ресурсы ЭВМ. К аппаратным ресурсам относятся микропроцессор (процессорное время), оперативная память и периферийные устройства; к программным ресурсам – доступные пользователю программные средства для управления вычислительными процессами и данными. Важнейшими программными ресурсами являются программы, входящие в систему программирования; средства программного управления периферийными устройствами и файлами; библиотеки системных и прикладных программ; средства, обеспечивающие контроль и взаимодействие вычислительных процессов (задач).

Операционная система распределяет ресурсы в соответствии с запросами пользователей и возможностями ЭВМ и с учетом взаимодействия вычислительных процессов. Функции ОС также реализуются рядом вычислительных процессов, которые сами потребляют ресурсы (память, процессорное время и др.) Вычислительные процессы, относящиеся к ОС, управляют вычислительными процессами, созданными по запросу пользователей.

Считается, что ресурс работает в режиме разделения, если каждый из вычислительных процессов занимает его в течение некоторого интервала времени. Например, два процесса могут разделять процессорное время поровну, если каждому процессу дается возможность использовать процессор в течение одной секунды из каждых двух секунд. Аналогично происходит разделение всех аппаратурных ресурсов, но интервалы использования ресурсов процессами могут быть неодинаковыми. Например, процесс может получить в своё распоряжение часть оперативной памяти на весь период своего существования, но микропроцессор может быть доступен процессу только в течение одной секунды из каждых четырёх.

Операционная система является посредником между ЭВМ и её пользователем. Она делает работу с ЭВМ более простой, освобождая пользователя от обязанностей распределять ресурсы и управлять ими. Операционная система осуществляет анализ запросов пользователя и обеспечивает их выполнение. Запрос отражает необходимые ресурсы и требуемые действия ЭВМ и представляется последовательностью команд на особом языке директив операционной системы. Такая последовательность команд называется заданием.

2 . Типы операционных систем.

Операционная система может выполнять запросы пользователей в пакетном или диалоговом режиме или управлять устройствами в реальном времени. В соответствии с этим различают операционные системы пакетной обработки, разделения времени и диалоговые (табл.1).

Таблица 2.1.

Операционные системы

Характеристики операционной системы

Характер взаимодействия пользователя с заданием

Число одновременно обслуживаемых пользователей

Обеспечиваемый режим работы ЭВМ

Пакетной обработки

Взаимодействие невозможно или ограничено

Один или несколько

Однопрограммный или мультипрограммный

Разделения времени

Диалоговый

Несколько

Мультипрограммный

Реального времени

Оперативный

Многозадачный

Диалоговая

Диалоговый

Однопрограммный

2,1 Операционные системы пакетной обработки.

Операционная система пакетной обработки – это система, которая обрабатывает пакет заданий, т. е. несколько заданий, подготовленных одним или разными пользователями. Взаимодействие между пользователем и его заданием во время обработки невозможно или крайне ограничено. Под управлением операционной системы пакетной обработки ЭВМ может функционировать в однопрограммном и мультипрограммном режимах.

2,2 Операционные системы разделения времени.

Такие системы обеспечивают одновременное обслуживание многих пользователей, позволяя каждому пользователю взаимодействовать со своим заданием в режиме диалога. Эффект одновременного обслуживания достигается разделением процессорного времени и других ресурсов между несколькими вычислительными процессами, которые соответствуют отдельным заданиям пользователей. Операционная система предоставляет ЭВМ каждому вычислительному процессу в течение небольшого интервала времени; если вычислительный процесс не завершился к концу очередного интервала, он прерывается и помещается в очередь ожидания, уступая ЭВМ другому вычислительному процессу. ЭВМ в этих системах функционирует в мультипрограммном режиме.

Появление первых операционных систем

Появление мультипрограммных операционных систем для мэйнфреймов

Операционные системы и глобальные сети

Операционные системы мини-компьютеров и первые локальные сети

Развитие операционных систем в 80-е годы

Особенности современного этапа развития операционных систем

Выводы

Задачи и упражнения

История любой отрасли науки или техники позволяет не только удовлетворить естественное любопытство, но и глубже понять сущность основных достижений этой отрасли, осознать существующие тенденции и правильно оценить перспективность тех или иных направлений развития. За почти полувековой период своего существования операционные системы прошли сложный путь, насыщенный многими важными событиями. Огромное влияние на развитие операционных систем оказали успехи в совершенствовании элементной базы и вычислительной аппаратуры, поэтому многие этапы развития ОС тесно связаны с появлением новых типов аппаратных платформ, таких как мини-компьютеры или персональные компьютеры. Серьезную эволюцию операционные системы претерпели в связи с новой ролью компьютеров в локальных и глобальных сетях. Важнейшим фактором развития ОС стал Интернет. По мере того как эта Сеть приобретает черты универсального средства массовых коммуникаций, ОС становятся все более простыми и удобными в использовании, включают развитые средства поддержки мультимедийной информации, снабжаются надежными средствами защиты.

Появление первых операционных систем

Идея компьютера была предложена английским математиком Чарльзом Бэбиджем (Charles Babage) в середине девятнадцатого века. Его механическая «аналитическая машина» так и не смогла по-настоящему заработать, потому что технологии того времени не удовлетворяли требованиям, необходимым для изготовления нужных деталей точной механики. Конечно, никакой речи об операционной системе для этого «компьютера» не шло.

Настоящее рождение цифровых вычислительных машин произошло вскоре после окончания Второй мировой войны. В середине 40-х были созданы первые ламповые вычислительные устройства. В то время одна и та же группа людей участвовала и в проектировании, и в эксплуатации, ив программировании вычислительной машины. Это была скорее научно-исследовательская работа в области вычислительной техники, а не использование компьютеров в качестве инструмента решения каких-либо практических задач из других прикладных областей. Программирование осуществлялось исключительно на машинном языке. Не было никакого системного программного обеспечения, кроме библиотек математических и служебных подпрограмм, которые программист мог использовать для того, чтобы не писать каждый раз коды, вычисляющие значение какой-либо математической функции или управляющие стандартным устройством ввода-вывода. Операционные системы все еще не появились, все задачи организации вычислительного процесса решались вручную каждым программистом с пульта управления, который представлял собой примитивное устройство ввода-вывода, состоящее из кнопок, переключателей и индикаторов. С середины 50-х годов начался новый период в развитии вычислительной техники, связанный с появлением новой технической базы - полупроводниковых элементов. Выросло быстродействие процессоров, увеличились объемы оперативной и внешней памяти. Компьютеры стали более надежными, теперь они могли непрерывно работать настолько долго, чтобы на них можно было возложить выполнение действительно практически важных задач.

Наряду с совершенствованием аппаратуры заметный прогресс наблюдался также в области автоматизации программирования и организации вычислительных работ. В эти годы появились первые алгоритмические языки, и таким образом к библиотекам математических и служебных подпрограмм добавился новый тип системного программного обеспечения - трансляторы.

Выполнение каждой программы стало включать большое количество вспомогательных работ: загрузка нужного транслятора (АЛГОЛ, ФОРТРАН, КОБОЛ и т. п.), запуск транслятора и получение результирующей программы в машинных кодах, связывание программы с библиотечными подпрограммами, загрузка программы в оперативную память, запуск программы, вывод результатов на периферийное устройство. Для организации эффективного совместного использования трансляторов, библиотечных программ и загрузчиков в штат многих вычислительных центров были введены должности операторов, профессионально выполнявших работу по организации вычислительного процесса для всех пользователей этого центра.

Но как бы быстро и надежно ни работали операторы, они никак не могли состязаться в производительности с работой устройств компьютера. Большую часть времени процессор простаивал в ожидании, пока оператор запустит очередную задачу. А поскольку процессор представлял собой весьма дорогое устройство, то низкая эффективность его использования означала низкую эффективность использования компьютера в целом. Для решения этой проблемы были разработаны первые системы пакетной обработки, которые автоматизировали всю последовательность действий оператора по организации вычислительного процесса. Ранние системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными не для обработки данных, а для управления вычислительным процессом.

В ходе реализации систем пакетной обработки был разработан формализованный язык управления заданиями, с помощью которого программист сообщал системе и оператору, какие действия и в какой последовательности он хочет выполнить на вычислительной машине. Типовой набор директив обычно включал признак начала отдельной работы, вызов транслятора, вызов загрузчика, признаки начала и конца исходных данных.

Оператор составлял пакет заданий, которые в дальнейшем без его участия последовательно запускались на выполнение управляющей программой - монитором. Кроме того, монитор был способен самостоятельно обрабатывать наиболее часто встречающиеся при работе пользовательских программ аварийные ситуации, такие как отсутствие исходных данных, переполнение регистров, деление на ноль, обращение к несуществующей области памяти и т. д. Пакет обычно представлял собой набор перфокарт, но для ускорения работы он мог переноситься на более удобный и емкий носитель, например на магнитную ленту или магнитный диск. Сама программа-монитор в первых реализациях также хранилась на перфокартах или перфоленте, а в более поздних - на магнитной ленте и магнитных дисках.

Ранние системы пакетной обработки значительно сократили затраты времени на вспомогательные действия по организации вычислительного процесса, а значит, был сделан еще один шаг по повышению эффективности использования компьютеров. Однако при этом программисты-пользователи лишились непосредственного доступа к компьютеру, что снижало эффективность их работы - внесение любого исправления требовало значительно больше времени, чем при интерактивной работе за пультом машины.

Поколения ОС также как и аппаратные средства отражают достижения в области электронных компонентов: 1 поколение – лампы, 2 поколение – транзисторы, 3 поколение – интегральные микросхемы (ИС), 4 поколение большие и сверхбольшие интегральные схемы – БИС и СБИС. Поколения компьютеров отличаются:

· стоимостью, габаритами, мощностью;

· быстродействием и объемом памяти.

Рассмотрим эволюцию операционных систем.

0 поколение (40 - 50 годы) - ОС отсутствует. Полный доступ к ресурсам ЭВМ на машинном языке, все программы разрабатываются в двоичном коде. Этот период характеризуется высокой стоимостью приобретения и эксплуатации компьютеров и низкой стоимостью труда программистов. Компьютеры использовались в монопольном интерактивном режиме. Основная цель – максимизировать использование аппаратного обеспечения. Основной режим работы компьютера – простой и ожидание каких-либо действий программиста. При этом наблюдается недостаточное использование дорогостоящего вычислительного оборудования.

1 поколение (60-е годы ). Возникласистема пакетной обработки . В каждый момент времени ЭВМ использовалась для решения одной прикладной программы. Пользователи уже не работают с ЭВМ на физическом уровне. Программы и данные принимает человек-оператор. Задание на обработку формируется в виде пакета, представляющего собой совокупность отдельных программ и данных, разделенных специальными символами. Пакет может быть составлен на перфокартах или МЛ. В машине постоянно находится управляющая программа, которая считывает последовательно пользовательские программы и данные из пакета и загружает их на выполнение. Результаты выводятся на внешнее устройство, и составляют пакет результатов. Управляющая программа должна фиксировать время исполнения каждой программы, реагировать на определенные ситуации по управлению программами по мере их исполнения (прекращать выполнение). Другими словами, она должна выполнять внутрисистемные операции управления, которые пользователь осуществлял ранее на физическом уровне. Дополнительно эта программа должна автоматически переключать машину на исполнение программ из пакета по последовательной схеме (FIFO ). Такую системную программу можно назвать простейшей ОС, обеспечивающей обработку программ в однопрограммном пакетном режиме .

Недостатки:

  1. Использование части машинного времени (времени процессора) на выполнение системной управляющей программы.
  2. Программа, получившая доступ к процессору, обслуживается до ее завершения. При этом если возникает потребность в передаче данных между внешними устройствами и ОП, то процессор простаивает, ожидая завершения операции обмена. С другой стороны при работе процессора простаивают внешние устройства. Для персонального компьютера проявление фактора простоя процессора не столь существенно, так как стоимость его не велика, чего не скажешь о больших и дорогих ЭВМ.

Этот недостаток однопрограммного режима был устранен в мультипрограммном пакетном режиме (65-75 г.г.) в ОС второго поколения . Главной целью и критерием эффективности систем пакетной обработки является максимальная пропускная способность, то есть решение максимального числа задач в единицу времени. Для этой цели в начале работы формируется пакет заданий, содержащих требования к системным ресурсам. Из этого пакета формируется мультипрограммная смесь из заданий, предъявляющих отличающиеся требования к ресурсам для того, чтобы обеспечить сбалансированную нагрузку всех устройств ЭВМ. Так, например, в мультипрограммную смесь желательно вводить вычислительные задачи и задачи, интенсивно использующие ввод/вывод. В системах пакетной обработки переключение процессов с выполнения одной задачи на другую происходит только в том случае, если активная задача сама отказывается от процессора, например, для выполнения операции ввода/вывода, что делает невозможным выполнение интерактивных задач.

Особенностью этого поколения было и то, что ОС создавались как системы коллективного пользования с мультипрограммным режимом работы и как первые системы мультипроцессорного типа. В таких системах несколько пользовательских программ одновременно присутствуют в оперативной памяти компьютера и центральный процессор (ЦП) динамически переключается с решения одной задачи на решение другой задачи. При этом появляется возможность одновременной загрузки ЦП и устройств ввода-вывода. В случае многопроцессорных систем единый вычислительный комплекс (ВК) содержит несколько процессоров, что повышает вычислительную мощность вычислительной системы (ВС).

В то же время появились методы, обеспечивающие независимость программирования от внешних устройств. В программе необходимо указывать только тип устройства, а не программировать его физический адрес. Конкретный адрес устройства определялся в процессе выполнения программы. Это было серьезное достижение в развитии ОС.

В этот период были разработаны системы с разделением времени (РВ), предоставляющие пользователям возможность непосредственно взаимодействовать с компьютером при помощи терминалов телетайпного типа (электронная пишущая машинка, имеющая интерфейс с ЭВМ), а в последующем и с помощью дисплея. При работе с такими ОС используется диалоговый или интерактивный режим. Каждому пользователю системы разделения времени предоставляется терминал, с которого он может вести диалог со своей программой. Пользователь вводит запрос, который обрабатывается и ответ выводится на терминал, что позволяет увеличить эффективность и удобство работы пользователя. Пакетный режимобеспечивал увеличение пропускной способности и максимальную загрузку процессора, отлучая пользователя от ЭВМ, в то время как в режиме разделения времени (РРВ) каждый пользователь имеет непосредственный доступ к ЭВМ через свой терминал. Суть разделения времени максимально проста. Каждой программе, готовой к исполнению, для работы выделяется фиксированный, заранее определенный интервал времени, называемый квантом. Программа в течение одного кванта может быть не выполнена до конца, тогда она прерывается в момент окончания кванта и помещается в конец очереди. Из начала очереди извлекается другая программа, которой планируется фиксированный интервал. При этом ни один из пользователей, работающих за дисплеем, параллельно друг с другом, никак не ощущает, что процессор мультиплексируется несколькими программами.

К этому же периоду относится появление первых систем реального времени (СРВ), в которых ЭВМ применяется для управления техническими объектами, такими, например, как станок, спутник, научная экспериментальная установка или технологическими процессами, такими, как гальваническая линия, доменный процесс и т.п. Во всех этих случаях существует предельно допустимое время, в течение которого должна быть выполнена та или иная программа, управляющая объектом, в противном случае может произойти авария: спутник сойдет с орбиты, экспериментальные данные могут быть потеряны, толщина гальванического покрытия не будет соответствовать норме. Характерным для СРВ является обеспечение заранее заданных интервалов времени реакции на предусмотренныесобытия для получения управляющего воздействия. Поскольку в технологических процессах промедление может привести к не желаемым и даже опасным последствиям, СРВ работают со значительной недогрузкой, так как важнейшей характеристикой является постоянная готовность системы – ее реактивность.

Системное программное обеспечение (СПО) ОС этого периода решало множество проблем, связанных с защитой данных и результатов работы различных программ, защитой данных в оперативной памяти и распределением устройств. Кроме того, ОС должна управлять новыми устройствами, входящими в состав аппаратного обеспечения. Для решения этих задач системное программное обеспечение сформировалось в сложную систему, требующую для реализации своих возможностей значительных вычислительных ресурсов.

ОС третьего поколения (70-80 г.г.) были многорежимными системами, обеспечивающими пакетную обработку, разделение времени, режим реального времени и мультипроцессорный режим. Они были громоздкими, дорогостоящими (монстры операционных систем). Например, фирме IBM разработка ОС/360 стоила 6 млрд. долларов, что соизмеримо с затратами американской программы NASA высадки человека на Луне. Такие ОС, будучи прослойкой, между пользователем и аппаратурой ЭВМ, привели к значительному усложнению вычислительной обстановки. Для выполнения простейшей программы необходимо было изучать сложные языки управления заданием (JCL – Job Control Language ). К этому периоду относится появление вытесняющей многозадачности (Preemptive scheduling ), и использование концепции баз данных для хранения больших объемов информации для организации распределенной обработки. Программисты перестали использовать перфокарты и магнитные ленты для хранения своих данных. Вводится приоритетное планирование (Prioritized scheduling ) и выделение квот на использование ограниченных ресурсов компьютеров (процессорного времени, дисковой памяти, физической (оперативной) памяти). При использовании компьютеров широкое распространение получила концепция распределения времени (time sharing ) , но ограниченность ресурсов приводила к перегрузке компьютеров и к неприемлемому времени ожидания ответа или результатов работы. Программистам приходилось компенсировать это неудобство работой в ночное время.

Четвертое поколение с середины 70-х. Период характеризуется уменьшением стоимости компьютеров и увеличением стоимости труда программиста. Появление персональных компьютеров позволило установить компьютер практически каждому пользователю на рабочем столе. Благодаря широкому распространению вычислительных сетей и средств оперативной обработки (режим on-line), пользователи получают доступ к территориально распределенным компьютерам. Появились микропроцессоры, на основе которых создаются все новые и новые PC, которые могут быть использованы, как автономно, так и в качестве терминалов более мощных вычислительных систем. При передаче информации по линиям связи усложняются проблемы защиты информации, шифрования данных. Возникло понятие сетевого компьютера (Network computer ) , способного получать все ресурсы через компьютерную сеть. Понятие файловой системы распространяется на данные, доступные по различным сетевым протоколам.

Число людей, пользующихся компьютером, значительно возросло, что выдвигает требование дружественного интерфейса пользователя, ориентации на неподготовленного пользователя. Появились системы с управлением с помощью меню и элементов графического интерфейса. Начала широко распространяться концепция виртуальных машин. Пользователь более не заботится о физическихдеталях построения ЭВМ или сетей. Он имеет дело с функциональным эквивалентом компьютера, создаваемым для него ОС, представляющимвиртуальную машину. Таким образом, возникла концепциявиртуализации ресурсов ЭВМ. Виртуальным ресурсом называется функциональный программно моделируемый эквивалент реального монопольного ресурса, допускающий его совместное использование многими процессами. Мультипрограммирование – виртуализация центрального процессора (ЦП – CPU). Буферный ввод/вывод – виртуализация устройств ввода и вывода.

В настоящее время концепция виртуальных машин находит все большее распространение. Виртуальная машина – это функциональный эквивалент реальной ЭВМ, обеспечивающий пользователей на основе одной ЭВМ множество функционально эквивалентных ей ЭВМ.

Широкое внедрение получила концепция распределенной обработки данных. Развитием распределенной обработки данных стала технология Клиент - Сервер , в которой серверный процесс предоставляет возможность использовать свои ресурсы клиентскому процессу по соответствующему протоколу взаимодействия. Название сервера отображает вид ресурса, который предоставляется клиентским системам (сервер печати, сервер вычислений, сервер баз данных, сервер новостей, сервер FTP, сервер WWW и т.д.)