Краткая форма записи числа. Развернутая и свернутая формы записи чисел. Перевод десятичных чисел в другие системы счисления

В разделе на вопрос Какие две формы записи чисел есть? заданный автором Просфора лучший ответ это В позиционных системах счисления количественный эквивалент (значение) цифры зависит от её места (позиции) в записи числа.
Позиция цифры в числе называется разрядом.
Разряд числа возрастает справа налево, от младших разрядов к старшим.
Основанием позиционной системы счисления называется целое число, которое равно количеству цифр, используемых для изображения чисел в данной системе счисления.
Основание показывает, во сколько раз изменяется количественное значение цифры при перемещении её в младший или старший разряд.
ПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ С ПРОИЗВОЛЬНЫМ ОСНОВАНИЕМ
Возможно использование множества позиционных систем счисления, основание которых равно или больше 2.
В системах счисления с основанием q (q-ичная система счисления) числа в развернутой форме записываются в виде суммы ряда степеней основания q с коэффициентами, в качестве которых выступают цифры 0, 1, …, q-1.
или
Aq – число в q-ичной системе счисления,
q – основание системы счисления,
Ai – цифры, принадлежащие алфавиту данной системы счисления,
n – число целых разрядов числа,
m – число дробных разрядов числа.
Коэффициенты ai - цифры числа, записанного в q-ичной системе счисления.
Свернутая форма записи числа:
Свернутой формой записи чисел мы пользуемся в повседневной жизни,
её называют естественной или цифровой.
Для записи дробей используются разряды с отрицательными значениями степеней основания.
ДЕСЯТИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ
Основание: q = 10.
Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Свернутая форма записи числа:
Развернутая форма записи числа:
Коэффициенты ai - цифры десятичного числа.
Например, число 123,4510 в развернутой форме будет записываться следующим образом:
Умножение или деление десятичного числа на 10 (величину основания) приводит к перемещению запятой, отделяющей целую часть от дробной на один разряд вправо или влево. Например:
123,4510 · 10 = 1234,510;
123,4510: 10 = 12,34510.

Пусть Aq - число в системе с основанием q , аi - цифры данной системы счисления, присутствующие в записи числа A , n + 1 - число разрядов целой части числа, m - число разрядов дробной части числа:

Развернутой формой числа А называется запись в виде:

Например, для десятичного числа:

В следующих примерах приводится развернутая форма шестнадцатеричного и двоичного чисел:

В любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную. Например, перевод в десятичную систему написанных выше чисел производится так:

Перевод десятичных чисел в другие системы счисления

Перевод целых чисел

Целое десятичное число X требуется перевести в систему с основанием q : X = (a n a n-1 …a 1 a 0) q .Нужно найти значащие цифры числа: .Представим число в развернутой форме и выполним тождественное преобразование:

Отсюда видно, что a 0есть остаток от деления числа X на число q . Выражение в скобках - целое частное от этого деления. Обозначим его за X 1. Выполняя аналогичные преобразования, получим:

Следовательно, a 1 есть остаток от деления X 1 на q . Продолжая деление с остатком, будем получать последовательность цифр искомого числа. Цифра an в этой цепочке делений будет последним частным, меньшим q .

Сформулируем полученное правило: для того чтобы перевести целое десятичное число в систему счисления с другим основанием, нужно :

1) основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить по правилам десятичной арифметики;

2) последовательно выполнять деление данного числа и получаемых неполных частных на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;



3) полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

4) составить число в новой системе счисления, записывая его, начиная с последнего частного.

Пример 1. Перевести число 37 10 в двоичную систему.

Для обозначения цифр в записи числа используем символику: a 5 a 4 a 3 a 2 a 1 a 0

Отсюда: 37 10 = l00l0l 2

Пример 2. Перевести десятичное число 315 в восьмеричную и в шестнадцатеричную системы:

Отсюда следует: 315 10 = 473 8 = 13B 16 . Напомним, что 11 10 = B 16 .

Десятичную дробь X < 1 требуется перевести в систему с основанием q : X = (0, a –1 a –2 … a –m+1 a –m) q .Нужно найти значащие цифры числа: a –1 , a –2 , …, a –m .Представим число в развернутой форме и умножим его на q :

Отсюда видно, что a –1есть целая часть произведения X на число q . Обозначим за X 1дробную часть произведения и умножим ее на q :

Следовательно, a –2 есть целая часть произведения X 1 на число q . Продолжая умножения, будем получать последовательность цифр. Теперь сформулируем правило: для того чтобы перевести десятичную дробь в систему счисления с другим основанием, нужно :

1) последовательно умножать данное число и получаемые дробные части произведений на основание новой системы до тех пор, пока дробная часть произведения не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;

2) полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;

3) составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.

Пример 3. Перевести десятичную дробь 0,1875 в двоичную, восьмеричную и шестнадцатеричную системы.

Здесь в левом столбце находится целая часть чисел, а в правом - дробная.

Отсюда: 0,1875 10 = 0,0011 2 = 0,14 8 = 0,3 16

Перевод смешанных чисел , содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).

Тема “Системы счисления” имеет прямое отношение к математической теории чисел. Однако в школьном курсе математики она, как правило, не изучается. Необходимость изучения этой темы в курсе информатики связана с тем фактом, что числа в памяти компьютера представлены в двоичной системе счисления, а для внешнего представления содержимого памяти, адресов памяти используют шестнадцатеричную или восьмеричную системы. Это одна из традиционных тем курса информатики или программирования. Являясь смежной с математикой, данная тема вносит вклад также и в фундаментальное математическое образование школьников.

Для курса информатики основной интерес представляет знакомство с двоичной системой счисления. Применение двоичной системы счисления в ЭВМ может рассматриваться в двух аспектах: 1) двоичная нумерация, 2) двоичная арифметика, т.е. выполнение арифметических вычислений над двоичными числами.

Двоичная нумерация

С двоичной нумерацией ученики встречаются в теме “Представление текста в компьютерной памяти”. Рассказывая о таблице кодировки, учитель должен сообщить ученикам, что внутренний двоичный код символа - это его порядковый номер в двоичной системе счисления. Например, номер буквы S в таблице ASCII равен 83. Восьмиразрядный двоичный код буквы S равен значению этого числа в двоичной системе счисления: 01010011.

Двоичные вычисления

Согласно принципу Джона фон Неймана, компьютер производит вычисления в двоичной системе счисления. В рамках базового курса достаточно ограничиться рассмотрением вычислений с целыми двоичными числами. Для выполнения вычислений с многозначными числами необходимо знать правила сложения и правила умножения однозначных чисел. Вот эти правила:

Принцип перестановочности сложения и умножения работает во всех системах счисления. Приемы выполнения вычислений с многозначными числами в двоичной системе аналогичны десятичной. Иначе говоря, процедуры сложения, вычитания и умножения “столбиком” и деления “уголком” в двоичной системе производятся так же, как и в десятичной.

Рассмотрим правила вычитания и деления двоичных чисел. Операция вычитания является обратной по отношению к сложению. Из приведенной выше таблицы сложения следуют правила вычитания:

0 - 0 = 0; 1 - 0 = 1; 10 - 1 = 1.

Вот пример вычитания многозначных чисел:

Полученный результат можно проверить сложением разности с вычитаемым. Должно получиться уменьшаемое число.

Деление - операция обратная умножению.
В любой системе счисления делить на 0 нельзя. Результат деления на 1 равен делимому. Деление двоичного числа на 10 2 ведет к перемещению запятой на один разряд влево, подобно десятичному делению на десять. Например:

Деление на 100 смещает запятую на 2 разряда влево и т.д. В базовом курсе можно не рассматривать сложные примеры деления многозначных двоичных чисел. Хотя способные ученики могут справиться и с ними, поняв общие принципы.

Представление информации, хранящейся в компьютерной памяти в ее истинном двоичном виде, весьма громоздко из-за большого количества цифр. Имеется в виду запись такой информации на бумаге или вывод ее на экран. Для этих целей принято использовать смешанные двоично-восьмеричную или двоично-шестнадцатеричную системы.

Существует простая связь между двоичным и шестнадцатеричным представлением числа. При переводе числа из одной системы в другую одной шестнадцатеричной цифре соответствует четырехразрядный двоичный код. Это соответствие отражено в двоично-шестнадцатеричной таблице:

Двоично-шестнадцатеричная таблица

Такая связь основана на том, что 16 = 2 4 и число различных четырехразрядных комбинаций из цифр 0 и 1 равно 16: от 0000 до 1111. Поэтому перевод чисел из шестнадцатеричных в двоичные и обратно производится путем формальной перекодировки по двоично-шестнадцатеричной таблице .

Вот пример перевода 32-разрядного двоичного кода в 16-ричную систему:

1011 1100 0001 0110 1011 1111 0010 1010 BC16BF2A

Если дано шестнадцатеричное представление внутренней информации, то его легко перевести в двоичный код. Преимущество шестнадцатеричного представления состоит в том, что оно в 4 раза короче двоичного . Желательно, чтобы ученики запомнили двоично-шестнадцатеричную таблицу. Тогда действительно для них шестнадцатеричное представление станет эквивалентным двоичному.

В двоично-восьмеричной системе каждой восьмеричной цифре соответствует триада двоичных цифр. Эта система позволяет сократить двоичный код в 3 раза.

Система счисления

Система счисления - это способ изображения чисел и соответствующие ему правила действия над числами . Разнообразные системы счисления, которые существовали раньше и которые используются в наше время, можно разделить на непозиционные и позиционные . Знаки, используемые при записи чисел , называютсяцифрами.

Внепозиционных системах счисления значение цифры не зависит от положения в числе .

Примером непозиционной системы счисления является римская система (римские цифры). В римской системе в качестве цифр используются латинские буквы:

Пример 1. Число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа - большая, то их значения вычитаются.

Пример 2.

VI = 5 + 1 = 6; IV = 5 – 1 = 4.

Пример 3.

MCMXCVIII = 1000 + (–100 + 1000) +

+ (–10 + 100) + 5 + 1 + 1 + 1 = 1998.

Впозиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от ее позиции . Количество используемых цифр называется основанием позиционной системы счисления.

Система счисления, применяемая в современной математике, является позиционной десятичной системой . Ее основание равно десяти, т.к. запись любых чисел производится с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционный характер этой системы легко понять на примере любого многозначного числа. Например, в числе 333 первая тройка означает три сотни, вторая - три десятка, третья - три единицы.

Для записи чисел в позиционной системе с основанием n нужно иметьалфавит из n цифр. Обычно для этого при n < 10 используют n первых арабских цифр, а при n > 10 к десяти арабским цифрам добавляют буквы. Вот примеры алфавитов нескольких систем:

Если требуется указать основание системы, к которой относится число, то оно приписывается нижним индексом к этому числу. Например:

101101 2 , 3671 8 , 3B8F 16 .

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числа q . q единиц какого-либо разряда образуют единицу следующего разряда. Для записи числа в q -ичной системе счисления требуется q различных знаков (цифр), изображающих числа 0, 1, ..., q – 1. Запись числа q в q -ичной системе счисления имеет вид 10.

Развернутая форма записи числа

Пусть Aq - число в системе с основанием q , аi - цифры данной системы счисления, присутствующие в записи числа A , n + 1 - число разрядов целой части числа, m - число разрядов дробной части числа:

Развернутой формой числа А называется запись в виде:

Например, для десятичного числа:

В следующих примерах приводится развернутая форма шестнадцатеричного и двоичного чисел:

В любой системе счисления ее основание записывается как 10.

Если все слагаемые в развернутой форме недесятичного числа представить в десятичной системе и вычислить полученное выражение по правилам десятичной арифметики, то получится число в десятичной системе, равное данному. По этому принципу производится перевод из недесятичной системы в десятичную. Например, перевод в десятичную систему написанных выше чисел производится так:

Ключевые слова:

  • система счисления
  • цифра
  • алфавит
  • позиционная система счисления
  • основание
  • развёрнутая форма записи числа
  • свёрнутая форма записи числа
  • двоичная система счисления
  • восьмеричная система счисления
  • шестнадцатеричная система счисления

1.1.1. Общие сведения о системах счисления

Рис. 1.1.
Знаки, используемые для записи чисел в различных системах счисления

В любой системе счисления цифры служат для обозначения чисел, называемых узловыми; остальные числа (алгоритмические) получаются в результате каких-либо операций из узловых чисел.

Пример 1 . У вавилонян узловыми являлись числа 1, 10, 60; в римской системе счисления узловыми являются числа 1, 5, 10, 50, 100, 500 и 1000, обозначаемые соответственно I, V, X, L, С, D, М.

Системы счисления различаются выбором узловых чисел и способами образования алгоритмических чисел. Можно выделить следующие виды систем счисления:

  1. унарные системы;
  2. непозиционные системы;
  3. позиционные системы.

Простейшая и самая древняя система - так называемая унарная система счисления. В ней для записи любых чисел используется всего один символ - палочка, узелок, зарубка, камушек. Длина записи числа при таком кодировании прямо связана с его величиной, что роднит этот способ с геометрическим представлением чисел в виде отрезков. Именно унарная система лежит в фундаменте арифметики, и именно она до сих пор вводит первоклассников в мир счёта. Унарные системы ещё называют системами бирок.

В непозиционных системах счисления числа образуются путём сложения узловых чисел.

Пример 2 . В древнеегипетской системе счисления числа 1, 2, 3, 4, 10, 13, 40 обозначались соответственно следующим образом:

Те же числа в римской системе счисления обозначаются так: I, II, III, IV, X, XIII, XL. Здесь алгоритмические числа получаются путём сложения и вычитания узловых чисел с учётом следующего правила: каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.

Десятичная система записи чисел, которой мы привыкли пользоваться в повседневной жизни, с которой мы знакомы с детства, в которой производим все наши вычисления, - пример позиционной системы счисления. В ней алгоритмические числа образуются следующим образом: значения цифр умножаются на «веса» соответствующих разрядов и все полученные значения складываются. Это отчётливо прослеживается в числительных русского языка, например: «три-ста пять-десят семь».

Основанием позиционной системы счисления может служить любое натуральное число q > 1.

Алфавит десятичной системы составляют цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Алфавитом произвольной позиционной системы счисления с основанием q служат числа 0, 1, ..., q-1, каждое из которых может быть записано с помощью одного уникального символа; младшей цифрой всегда является О.

Основные достоинства любой позиционной системы счисления - простота выполнения арифметических операций и ограниченное количество символов, необходимых для записи любых чисел.

    a 1 - цифры, принадлежащие алфавиту данной системы счисления;

    q 1 - «вес» i-гo разряда.

Запись числа по формуле (1) называется развёрнутой формой записи. Свёрнутой формой записи числа называется его представление в виде ±a n-1 a n-2 ...a 1 a 0 ,a -1 ...a -m 1

    1 Далее будут рассматриваться только положительные целые числа.

Пример 3. Рассмотрим десятичное число 14351,1. Его свёрнутая форма записи настолько привычна, что мы не замечаем, как в уме переходим к развёрнутой записи, умножая цифры числа на «веса» разрядов и складывая полученные произведения:

1 10 4 + 4 10 3 + 3 10 2 + 5 10 1 + 1 10 0 + 1 10 -1 .

1.1.2. Двоичная система счисления

Двоичной системой счисления называется позиционная система счисления с основанием 2. Для записи чисел в двоичной системе счисления используются только две цифры: 0 и 1.

На основании формулы (1) для целых двоичных чисел можно записать:

Например:

10011 2 = 1 2 4 + 0 2 3 + 0 2 2 + 1 2 1 + 1 2 0 = 2 4 + 2 1 + 2 0 = 19 10 .

Такая форма записи «подсказывает» правило перевода натуральных двоичных чисел в десятичную систему счисления: необходимо вычислить сумму степеней двойки, соответствующих единицам в свёрнутой форме записи двоичного числа.

Получим из формулы (1") правило перевода целых десятичных чисел в двоичную систему счисления.

Разделим

а n-1 2 n-1 + а n-2 2 n-2 + ... + а 0 2 0 на 2.

Частное будет равно

а n-1 2 n-2 + ... + а 1 ,

а остаток будет равен а 0 .

Полученное частное опять разделим на 2, остаток от деления будет равен а 1 .

Если продолжить этот процесс деления, то на n-м шаге получим набор цифр:

а 0 , a 1 , a 2 , ..., a n-1

которые входят в двоичное представление исходного числа и совпадают с остатками при его последовательном делении на 2. При записи исходного числа в двоичной системе счисления следует учитывать, что остатки от деления на 2 нами получены в порядке, обратном порядку расположения соответствующих цифр в двоичном представлении исходного числа.

Пример 4 . Переведём десятичное число 11 в двоичную систему счисления. Рассмотренную выше последовательность действий (алгоритм перевода) можно изобразить так:

Выписывая остатки от деления в направлении, указанном стрелкой, получим: 11 10 = 1011 2 .

Пример 5 . Если десятичное число достаточно большое, то более удобен следующий способ записи рассмотренного выше алгоритма:

363 10 = 101101011 2

1.1.3. Восьмеричная система счисления

Восьмеричной системой счисления называется позиционная система счисления с основанием 8. Для записи чисел в восьмеричной системе счисления используются цифры: 0, 1, 2, 3, 4, 5, 6, 7.

На основании формулы (1) для целого восьмеричного числа можно записать:

Например: 1063 8 = 1 8 3 + 0 8 2 + 6 8 1 + 3 8 0 = 563 10

Таким образом, для перевода целого восьмеричного числа в десятичную систему счисления следует перейти к его развёрнутой записи и вычислить значение получившегося выражения.

Для перевода целого десятичного числа в восьмеричную систему счисления следует последовательно выполнять деление данного числа и получаемых целых частных на 8 до тех пор, пока не получим частное, равное нулю. Исходное число в новой системе счисления составляется последовательной записью полученных остатков, начиная с последнего.

Пример 6. Переведём десятичное число 103 в восьмеричную систему счисления.

1.1.4. Шестнадцатеричная система счисления

Основание: q = 16.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, Е, F.

Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0,..., 9. Для записи цифр с десятичными количественными эквивалентами 10, 11, 12, 13, 14, 15 обычно используются первые пять букв латинского алфавита.

Таким образом, запись 3AF16 означает:

3AF 16 = 3 16 2 + 10 16 1 + 15 16 0 = 768 + 160 + 15 = 943 10 .

Пример 7 . Переведём десятичное число 154 в шестнадцатеричную систему счисления.

1.1.5. Правило перевода целых десятичных чисел в систему счисления с основанием q

Для перевода целого десятичного числа в систему счисления с основанием q следует:

  1. последовательно выполнять деление данного числа и получаемых целых частных на основание новой системы счисления до тех пор, пока не получим частное, равное нулю;
  2. полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;
  3. составить число в новой системе счисления, записывая его, начиная с последнего полученного остатка.

Составим таблицу соответствия десятичных, двоичных, восьмеричных и шестнадцатеричных чисел от 0 до 20.

В Единой коллекции цифровых образовательных ресурсов (http://school-collection.edu.ru/) размещена интерактивная анимация «Преобразование десятичного числа в другую систему счисления». С её помощью можно понаблюдать за переводом произвольного целого числа от 0 до 512 в позиционную систему счисления, основание которой не превышает 16.

В размещённой там же виртуальной лаборатории «Цифровые весы» вы сможете освоить ещё один способ перевода целых десятичных чисел в другие системы счисления - метод разностей.

1.1.6. Двоичная арифметика

Арифметика двоичной системы счисления основывается на использовании следующих таблиц сложения и умножения:

Пример 8 . Таблица двоичного сложения предельно проста. Так как 1 + 1 = 10, то 0 остаётся в данном разряде, а 1 переносится в следующий разряд.

Пример 9 . Операция умножения выполняется по обычной схеме, применяемой в десятичной системе счисления, с последовательным умножением множимого на очередную цифру множителя.

Таким образом, в двоичной системе умножение сводится к сдвигам множимого и сложениям.

1.1.7. «Компьютерные» системы счисления

В компьютерной технике используется двоичная система счисления, обеспечивающая ряд преимуществ перед другими системами:

  • двоичные числа представляются в компьютере с помощью достаточно простых технических элементов с двумя устойчивыми состояниями;
  • представление информации посредством только двух состояний надёжно и помехоустойчиво;
  • двоичная арифметика наиболее проста;
  • существует математический аппарат, обеспечивающий логические преобразования двоичных данных.

Обмен информацией между компьютерными устройствами осуществляется путём передачи двоичных кодов. Пользоваться такими кодами из-за их большой длины и зрительной однородности человеку неудобно. Поэтому специалисты (программисты, инженеры) на некоторых этапах разработки, создания, настройки вычислительных систем заменяют двоичные коды на эквивалентные им величины в восьмеричной или шестнадцатеричной системах счисления. В результате длина исходного слова сокращается в три, четыре раза соответственно. Это делает информацию более удобной для рассмотрения и анализа.

С помощью ресурса «Интерактивный задачник, раздел “Системы счисления”» (http://school-collection.edu.ru/) вы сможете проверить, насколько прочно вы усвоили изученный в этом параграфе материал.

Самое главное

Система счисления - это знаковая система, в которой приняты определённые правила записи чисел. Знаки, при помощи которых записываются числа, называются цифрами, а их совокупность - алфавитом системы счисления.

Система счисления называется позиционной, если количественный эквивалент цифры в числе зависит от её положения в записи числа. Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит.

Основанием позиционной системы счисления может служить любое натуральное число q > 1.

В позиционной системе счисления с основанием q любое число может быть представлено в виде:

    А - число;

    q - основание системы счисления;

    а i - цифры, принадлежащие алфавиту данной системы счисления;

    n - количество целых разрядов числа;

    m - количество дробных разрядов числа;

    q i - «вес» i-гo разряда.

Вопросы и задания


Основанием позиционной системы счисления называется целое число q, которое возводится в степень.

Базисом позиционной системы счисления называется последовательность чисел, каждое из которых определяет количественный эквивалент (вес) символа в зависимости от его места в коде числа.

Базис десятичной системы счисления: …10 n , 10 n –1 ,…, 10 1 , 10 0 , 10 –1 , …, 10 – m ,…

Базис произвольной позиционной системы счисления: …q n , q n –1 , …, q 1 , q 0 , q –1 , …, q m , …

Основание в любой системе изображается как 10, но имеет разное количественное значение. Оно показывает, во сколько раз изменяется количественное значение цифры при перемещении ее на соседнюю позицию. Возможно множество позиционных систем, так как за основание системы счисления можно принять любое число, не меньшее 2.

Наименование системы счисления соответствует ее основанию (десятичная, двоичная, пятеричная и т. д.).

В системе счисления с основанием q (q -ичная система счисления) единицами разрядов служат последовательные степени числа q, иначе говоря, q единиц какого-либо разряда образуют единицу следующего разряда.

Для записи чисел в q -ичной системе счисления требуется q различных знаков (цифр), изображающих числа 0, 1, ..., q – 1.

Следовательно, основание позиционной системы счисления равно количеству символов (знаков) в ее алфавите. Запись числа q в q -ичной системе счисления имеет вид 10.

Пример 1. Восьмеричная система счисления.

Основание: q = 8.

Алфавит: 0, 1, 2, 3, 4, 5, 6 и 7.

Числа: например, 45023,152 8 ; 751,001 8 .

Пример 2. Пятеричная система счисления.

Основание: q = 5.

Алфавит: 0, 1, 2, 3 и 4.

Числа: например, 20304 5 ; 324,03 5 .

Пример 3. Шестнадцатеричная система счисления.

Основание: q = 16.

Алфавит: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, С, D, E, F.

Здесь только десять цифр из шестнадцати имеют общепринятое обозначение 0-9. Для записи остальных символов алфавита (10, 11, 12, 13, 14 и 15) обычно используются первые пять букв латинского алфавита.

Числа: например, В5С3,1А2 16 ; 355,0FА01 8 .

В позиционной системе счисления любое вещественное число может быть представлено в следующем виде:

A q = ±(a n –1 ×q n –1 + a n –2 ×q n –2 +…+ a 0 ×q 0 + a –1 ×q –1 + a –2 ×q –2 +…+ a m ×q –m ), (1) или ±.

Здесь А - само число; q - основание системы счисления;
а i - цифры, принадлежащие алфавиту данной системы счисления; п - количество целых разрядов числа; т - количество дробных разрядов числа.

Разложение числа по формуле (1) называется развернутой формой записи . Иначе такую форму записи называют многочленной или степенной.

Пример 1. Десятичное число А 10 = 5867,91 по формуле (1) представляется следующим образом:



A 10 = 5×10 3 + 8 × 10 2 + 6 × 10 1 + 7 × 10 0 + 9 × 10 –1 + 1 × 10 –2 .

Пример 2. Формула (1) для восьмеричной системы счисления имеет вид:

A 8 = ±(a n –1 × 8 n –1 + a n –2 × 8 n –2 +…+ a 0 × 8 0 +a –1 ×8 –1 + a –2 ×8 –2 +…+ a –m ×8 –m ),

где а i - цифры 0–7.

Восьмеричное число A 8 = 7064,3 в виде (1) запишется так:

A 8 = 7 × 8 3 + 0 × 8 2 + 6 × 8 1 + 4 × 8 0 + 3 × 8 –1 .

Пример 3. Пятеричное число А 5 = 2430,21 по формуле (1) запишется так:

А 5 = 2 × 5 3 + 4 × 5 2 + 3 × 5" + 0 × 5° + 2 × 5 –1 + 1 × 5 –2 .

Вычислив это выражение, можно получить десятичный эквивалент указанного пятеричного числа: 365,44 10 .

Пример 4. В шестнадцатеричной системе счисления запись 3AF 16 означает:

3AF 16 = 3 × 16 2 + 10 × 16 1 + 15 × 16 0 = 768 + 160 + 15 = 943 10 .